Méthodes Numériques

Abdellatif MEGNOUNIF

Chap. 1

Introduction Rappels sur les Matrices

1.1 Définition

Une matrice rectangulaire [A] d'ordre (mxn) est définie comme suit:

[A] = [aij] =
$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

```
m=n; Matrice carrée
```


1.2 Propriétés des Matrices

1.2.1 Transposée d'une matrice.

Notée [A]^T obtenue par permutation des lignes et colonnes

[A] =
$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \end{bmatrix}$$
; [A]T =
$$\begin{bmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \\ a_{13} & a_{23} \\ a_{14} & a_{24} \end{bmatrix}$$

On a alors;

$$([A]^T)^T = [A]$$

 $([A]^T + [B]^T) = ([A] + [B])^T$
 $([A] [B])^T = [B]^T [A]^T$

1.2.2 Matrices Diagonales.

Matrices où les seuls éléments non zéro sont les termes de la diagonale. C'est une matrice carrée.

$$\begin{bmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & a_{nn} \end{bmatrix}$$

$$\mathbf{a}_{ij} = \begin{cases} 0 & i \neq j \\ \neq 0 & i = j \end{cases}$$

1.2.3 Matrice Identité.

Matrice diagonale où tous les termes sont égaux à l'unité.

$$[A] = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{a}_{ij} = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$$

1.2.4 Matrice Scalaire.

Matrice diagonale où tous les termes sont égaux à un scalaire.

$$[A] = \begin{bmatrix} k & 0 & \dots & 0 \\ 0 & k & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & k \end{bmatrix} = k [I]$$

$$\mathbf{a_{ij}} = \begin{cases} 0 & i \neq j \\ k & i = j \end{cases}$$

1.2.5 Matrice Triangulaire.

Matrice carrée où tous les termes au dessus ou bien au dessous de la diagonale sont nuls.

Triangulaire Supérieure Triangulaire inférieure
$$a_{ij} = 0$$
 si i>j $a_{ij} = 0$ si i

1.2.6 Matrice Triangulaire bandée.

Matrice carrée où seuls les éléments de la diagonale et ceux des 02 rangées parallèles à la diagonale (de part et d'autre de celle-ci) sont différents de zéro

$$\begin{bmatrix} a_{11} & a_{12} & 0 & \cdots & 0 \\ a_{21} & a_{22} & a_{23} & 0 & 0 \\ 0 & a_{32} & a_{33} & \ddots & 0 \\ \vdots & 0 & \ddots & \ddots & a_{n-1,n} \\ 0 & 0 & 0 & a_{n,n-1} & a_{nn} \end{bmatrix}$$

1.2.7 Matrice symétrique.

Matrice carrée où les termes extra diagonaux sont égaux de part et d'autre de la diagonale.

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{12} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{nn} \end{bmatrix} \forall i, j \qquad a_{ij} = a_{ji}$$

$$\forall i, j \qquad a_{ij} = a_{ji}$$

$$[A] = [A]^{\mathsf{T}}$$

1.3 Opérations sur les Matrices

1.3.1 Egalité.

Deux matrices [A] et [B] sont égales SSI:

- * A et B ont les mêmes dimensions (m et n)
- Tous les éléments correspondants sont égaux.

$$\forall i, j \qquad a_{ij} = b_{ij}$$

1.3.2 Addition, Soustraction.

Si les matrices ont les mêmes nombres de lignes et de colonnes

$$[A] + [B] = [C]$$

j=1...m
$$\forall i,j \qquad a_{ij}+b_{ij}=c_{ij}$$

1.3.3 Multiplication par un scalaire.

C'est multiplier chaque terme de la matrice par ce scalaire.

$$[B] = k.[A]$$

$$\forall i, j$$

$$b_{ij} = k.a_{ij}$$

1.3.4 Multiplication de 02 matrices.

Il faut que le nombre de colonnes de la 1ère soit égal au nombre de lignes de la 2ème.

[C]_{mxn} = [A]_{mxp} . [B]_{pxn} i=1...m
$$j=1...n$$

$$\forall i,j,k$$

$$c_{ij} = \sum_{k=1}^{p} a_{ik}.b_{kj}$$

1.3.5 Déterminant d'une matrice.

Uniquement pour les matrices carrées. Déterminant est un scalaire.

$$\det[A] = |A| = \begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix}$$

- det [A] = det [A]T
- det ([A] [B]) = det [A] . det [B]
- Si tous les termes d'une ligne ou d'une colonne sont nuls alors, det = 0

Formule d'expansion de Laplace

$$\det[A]_{nxn} = \sum_{k=1}^{n} a_{ik}.\overline{A_{ik}}$$
 i: n'importe quelle ligne non sommée

Ou bien

$$\det[A]_{nxn} = \sum_{k=1}^{n} a_{jk}.\overline{A_{jk}}$$
 j: n'importe quelle colonne non sommée

Avec:
$$\overline{A_{ij}} = (-1)^{i+j} \overline{M_{ij}}$$
 Appelé Co-facteur

et M_{ij} appelé mineur du déterminant, qui correspond à un déterminant obtenu en éliminant la ligne « i » et la colonne « j » du det[A].

exemple

$$\det[A] = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \sum_{k=1}^{3} a_{ik} \overline{A_{ik}}$$

$$\det[A] = a_{11}\overline{A_{11}} + a_{12}\overline{A_{12}} + a_{13}\overline{A_{13}}$$

$$\det[A] = a_{11}(-1)^{1+1} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + a_{12}(-1)^{1+2} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}$$

$$+ a_{13} (-1)^{1+3} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

1.3.6 Inverse d'une matrice.

Plusieurs méthodes, les plus populaires:

i) Méthode de la matrice adjointe

$$[A]^{-1} = \frac{Adj[A]}{|A|}$$

Avec:

$$Adj[A] = \begin{bmatrix} \overline{A_{11}} & \overline{A_{21}} & \cdots & \overline{A_{n1}} \\ \overline{A_{12}} & \overline{A_{22}} & \cdots & \overline{A_{n2}} \\ \vdots & \vdots & \ddots & \vdots \\ \overline{A_{1n}} & \overline{A_{2n}} & \cdots & \overline{A_{nn}} \end{bmatrix} = [\overline{A_{ij}}]^{T}$$

Matrice transpose de la matrice des co-facteurs

1.4 Résolution de systèmes d'équations

Soit le système [K] $\{\Delta\}$ = $\{P\}$ à résoudre.

Ou bien:

$$K_{11}.\Delta_{11} + K_{12}.\Delta_{12} + K_{13}.\Delta_{13} + ... K_{1n}.\Delta_{1n} = P_1$$
 $K_{21}.\Delta_{21} + K_{22}.\Delta_{22} + K_{23}.\Delta_{23} + ... K_{2n}.\Delta_{2n} = P_2$
...
 $K_{n1}.\Delta_{n1} + K_{n2}.\Delta_{n2} + K_{n3}.\Delta_{n3} + ... K_{nn}.\Delta_{1n} = P_n$

Méthodes directes et méthodes itératives

Méthodes directes

Basées généralement sur l'élimination de Gauss Donnent en général, un résultat exact

Méthodes Itératives

- Commencent par supposer une solution initiale approchée, et en appliquant un algorithme adéquat, on aboutit à des approximations successives meilleures.
- On arrête lorsqu'il ya convergence.

Avantages: Simplicité et uniformité des opérations menées.

Mais peut diverger, si la solution initiale est mal choisie.

1.4.1 méthode d'élimination de Gauss.

c'est transformer le système initial de base en un système triangulaire équivalent.

i) exemple
$$x_1 - x_2 + 3x_3 = 10$$
 (1) $2x_1 + 3x_2 + x_3 = 15$ (2) $4x_1 + 2x_2 - x_3 = 6$ (3)

Pour triangulariser, il faut d'abord éliminer x₁ de la 2^{ème} et 3^{ème} lignes.

Soit: multiplier (1) par (-2) et puis l'additionner à (2) et multiplier (1) par (-4) et l'additionner à (3)

(-2).
$$(x_1 - x_2 + 3x_3 = 10) + (2x_1 + 3x_2 + x_3 = 15)$$

 $5x_2 - 5x_3 = -5$ (4)
(-4). $(x_1 - x_2 + 3x_3 = 10) + (4x_1 + 2x_2 - x_3 = 6)$
 $6x_2 - 13x_3 = -34$ (5)

Le système obtenu après une élimination est:

$$x_1 - x_2 + 3x_3 = 10$$
 (1)

$$5x_2 - 5x_3 = -5$$
 (4)

$$6x_2 - 13x_3 = -34 \tag{5}$$

Il faut ensuite éliminer x₂ de la 3^{ème} équation:

Soit: multiplier (4) par (-6/5) et puis l'additionner à (5)

$$(-6/5).(5x_2 - 5x_3 = -5) + (6x_2 - 13x_3 = -34)$$

- $7x_3 = -28$ (6)

On applique maintenant la substitution arrière.

De (6), on aura:
$$x_3 = -28/-7$$

De (4),
$$x_2 = -1 + x_3$$

et de (1),
$$x_1 = x_2 - 3x_3 + 10$$

généralisation

Si x_k est éliminé, on aura:

$$x_k = \frac{b_k^{(k-1)}}{a_{kk}^{(k-1)}} - \sum_{j=k+1}^n \frac{a_{kj}^{(k-1)}}{a_{kk}^{(k-1)}} x_j$$

Où:

$$a_{ij}^{(k)} = a_{ij}^{(k-1)} - \left[a_{ik}^{(k-1)} . a_{kj}^{(k-1)} / a_{kk}^{(k-1)} \right]$$

i,j=k+1...n

$$b_i^{(k)} = b_i^{(k-1)} - \left[a_{ik}^{(k-1)} . b_k^{(k-1)} / a_{kk}^{(k-1)} \right]$$

On applique ceci (n-1) fois, on obtient:

$$a_{nn}^{(n-1)}.x_n = b_n^{(n-1)}$$

Ensuite, substitution arrière.

1.4.2 méthode de Cholesky.

c'est décomposer une matrice carrée en un produit d'une matrice triangulaire supérieure et autre inférieure, comme suit:

$$[A] = [L] [U]$$

Avec:

$$\begin{bmatrix} 1 & U_{12} & \dots & U_{1n} \\ 0 & 1 & \dots & U_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

$$l_{ij} = a_{ij} - \sum_{k=1}^{j-1} l_{ik} U_{kj} \qquad i \ge j \qquad U_{ij} = \frac{a_{ij} - \sum_{k=1}^{i-1} l_{ik} U_{kj}}{l_{ii}} \qquad i < j$$

Méthodes Numériques

Abdellatif MEGNOUNIF

Semaine Prochaine

Concepts Généraux de la Méthode des Eléments Finis

Merci. Fin du chapitre 1

