Université AbouBakr Belkaid Faculté des Sciences de l'Ingénieur Département de Productique

Economie pour Ingénieurs Master (M2) 2009-2010

Remarque : Cette liste permet de résoudre des exercices liés aux différents chapitres traités. On va essayer de résoudre le maximum en classe, ce qui reste sera envoyé dans une liste corrigée.

Problèmes Résolus Chapitre 8. Risque et Incertitude

<u>Exercice 9.</u> a. Vous êtes en face d'un problème de décision personnelle sous risque, laquelle des alternatives vous allez choisir ?

Alternative	S1 (P=0.4)	S2 (0.6)
A_1	\$110	-\$20
A_2	-40	85
A_3	0	50

b. Répondez à la question en supposant que tous les profits sont exprimés en centaine de millier de dollars.

Exercice 13. Les coûts de réparation d'une machine ont été enregistrés comme suit :

\$2250	\$4000	\$750	\$1250
1000	500	1000	750
500	250	250	2750
750	1500	1750	250
500	1750	1500	1000

Sur la base de ces données :

- i) trouver la valeur médiane.
- ii) Trouver UQ et LQ, quart supérieur et quart inférieur.
- iii) Estimer la probabilité qu'une certaine réparation coûterait \$1000 ou plus.

Exercice 14. Un système de transfert de chaleur a été installé dans le cadre d'un programme de modernisation de l'usine. Il coûte \$10000, installation incluse et il est supposé réduire les coûts de fonctionnement de l'usine de \$2500 par an. L'estimation de la durée de vie de ce système varie de la valeur optimiste de 12 années à la valeur pessimiste de 04ans. La plus probable est de 05 ans.

- i) En utilisant une distribution BETA II, déterminer le taux de rendement (i%) à la durée de vie attendue.
- ii) A quelle durée de vie, l'investissement serait recouvert (la période de profit)?

Exercice 15. Les coûts de maintenance estimés sont très incertains, mais on pense qu'il y a 50% de chance qu'ils sont moins de \$15000 et plus de \$9000. Supposons que les estimations suivent une loi normale, quelle est :

- i) La valeur moyenne et la déviation standard estimées.
- ii) La probabilité pour que les coûts soient supérieurs à \$12000
- iii) La probabilité pour que les coûts soient supérieurs à \$16000

Exercice 16. En utilisant une distribution BETA II et le fait que pour des variables indépendantes, si elles sont sommées, la valeur totale attendue est égale à la somme des valeurs des variables attendues et la variance totale est égale à la somme des variances de chaque variable, trouver la valeur attendue du coût total ainsi que sa variance pour les données suivantes :

Différents coûts	Valeur optimiste	Valeur plus probable	Valeur Pessimiste
1. Main d'œuvre	\$79	\$95	\$95
2. Matériaux	60	66	67
3. Dépenses indirectes	93	93	96

Problèmes Résolus Chapitre 9. Analyse de la Sensibilité

Exercice 1. Pour un certain projet, les meilleurs estimations étaient comme suit :

Prix Initial	\$100 000
Durée de vie	10 ans
Valeur résiduelle (SV)	\$20 000
Cash-flow annuel Net	\$30 000
MARR	10%

On essaye de déterminer la sensibilité sur AW pour une variation de \pm 50% pour les facteurs suivants :

- i) Durée de vie
- ii) Cash-flow annuel net
- iii) MARR

<u>Exercice 3.</u> On considère deux types de pompes pour un besoin de drainage. Les 2 pompes travaillent à un taux d'output de 8 kW, mais diffèrent dans le prix initial et l'efficacité électrique. Le coût de l'électricité est de \$0.05 le kWh. On prend un MARR =15%. Cidessous on trouve les données nécessaires.

	Pompe A	Pompe B
Prix initial	\$3500	\$4500
Durée de Vie (SV=0)	10 ans	15 ans
Coût de maintenance par 1000 h de	\$50	\$30
fonctionnement		
Efficacité	60%	80%

- i) Le facteur critique difficile à estimer est le nombre d'heures de fonctionnement par an. Déterminer le seuil de rentabilité pour ce facteur.
- ii) Si le temps de fonctionnement est supérieur au seuil, quelle pompe vous choisissez ?

iii) Tracer la variation de AW de chaque pompe en fonction du nombre d'heures de fonctionnement.

Exercice 6. Une machine industrielle coûte \$10000 va produire des gains annuels nets de \$4000/an. La machine a une durée de vie de 5 ans mais elle doit être retournée à l'usine pour des réparations après 03 ans de fonctionnement qui vont coûtées \$5000. le MARR=10%. Quel est le taux de rendement « i » peut-on gagner en achetant cette machine? Analyser la sensibilité du taux de rendement interne pour des changements de \pm 2000 dans les coûts de réparation.

<u>Exercice 11.</u> Les meilleures estimations des paramètres d'un investissement sont données cidessous. On suppose que l'investissement continue indéfiniment dans le temps.

Prix Initial	\$15000
Revenu Annuel Net	\$2500
Durée de vie	10 ans
Valeur Résiduelle (SV)	0
MARR	15%

- i) En utilisant la méthode simple (un à la fois) pour chaque paramètre, détermine le(s) paramètres le(s) plus critique(s).
- ii) En utilisant la méthode à plusieurs paramètres, déterminer la surface de sensibilité pour les 2 facteurs, prix initial de l'investissement et les revenus annuels nets.

Responsable de la matière **Dr Abdellatif MEGNOUNIF**