Université AbouBakr Belkaid Faculté des Sciences de l'Ingénieur Département de Productique

Economie pour Ingénieurs Master (M2) 2009-2010

Remarque : Cette liste permet de résoudre des exercices liés aux différents chapitres traités. On va essayer de résoudre le maximum en classe, ce qui reste sera envoyé dans une liste corrigée.

Problèmes Résolus Chapitre 4. Dépréciation et Taxes

Exercice 2. Une personne vient juste d'acheter une nouvelle machine à \$25000. Son transport a coûté \$500 alors que les frais d'installation sont de \$300. La machine a une durée de vie estimée à 8 années, à ce moment les frais de démontage sont estimées à \$1000 et la machine peut être vendue à la fin à \$5000. Calculer la dépréciation pendant la première année ainsi que la valeur de la machine à la fin de la première année en utilisant les méthodes suivantes :

- i) Ligne droite
- ii) La méthode de l'amortissement dégressif à taux fixe DB
- iii) Méthode de l'amortissement dégressif à taux décroissant (SYD)

Exercice 12. En an 200X, une compagnie suppose avoir un revenu brute de \$500000. Les coûts de fonctionnement sont de \$400000. De plus, cette compagnie peut déclarer des charges de dépréciation de \$60000 pour l'année. Si le taux de taxes est de 15%, quel serait la valeur du revenu imposable ? Quels seront les taxes sur revenu que devrait cette compagnie à l'état pendant l'année ?

Exercice 14. Une compagnie veut investir une somme de \$100000 dans un projet qui va durer 08 ans. Ce projet a comme cash-flow le suivant :

Investissement Initial	\$100000
Recettes Annuelles	\$75000
Dépenses annuelles	\$45000
Valeur Résiduelle	\$20000
Durée du projet	08 années

En considérant un taux de taxe de 20% et un taux d'intérêt après taxe de 15% et en utilisant la méthode de la droite linéaire pour calculer la dépréciation, déterminer si l'investissement est intéressant en utilisant la valeur présente (PW method)

Problèmes Résolus Chapitre 5. Inflation

Exercice 2. Si le taux d'inflation moyen est supposé être égal à 8% par an pour les prochaines prévisions, en combien d'années le pouvoir d'achat du dollar sera de moitie par rapport a maintenant (i.e le temps en futur lorsque ça nécessite 02 \$ pour acheter ce qu'on achète maintenant avec \$1)

Exercice 3. John et Mary ont fait des calculs et ont déterminé que des versements annuels de \$3700 dans un compte à i_c=15% d'intérêt vont leur rapporté \$1 million en 40 ans. Si le taux d'inflation annuel moyen pendant ces 40 ans est de 7%, quel le pouvoir de dépense équivalent, en dollar actuel (A\$), au million de dollar qu'ils comptent avoir.

Exercice 5. Si vous achetez une machine maintenant, vous allez payer \$100000. Si vous attendez 02 années pour l'acheter, ça va coûter \$135000. Supposons que vous décidiez d'acheter la machine maintenant, sachant que vous pouvez gagner 18% sur les \$100000 si vous n'achetez pas. Si le taux d'inflation est 12% par an pendant les 02 prochaines années, est-ce que vous avez pris la bonne décision ?

Exercice 11. Une compagnie d'électricité facture maintenant un montant global de \$400 million. Pendant les prochaines 10 années, la consommation va augmenter de 75% et la facture après 10 ans est estimée à \$920 million. Supposons que la consommation est uniforme le long de l'année, quel est le taux d'inflation annuel des prix de consommation supposé par cette compagnie ?

Problèmes Résolus Chapitre 6. Notions de Remplacement

Exercice 1. Une compagnie compte remplacer un ordinateur qu'elle a acheté il y a 03 ans avec \$450000. Les coûts de maintenance et de fonctionnement étaient de \$85000 par an. Actuellement l'ordinateur a une valeur d'échange (trade in value) de \$300000 contre un nouvel ordinateur de \$650000 et a une durée de vie de 05 ans avec comme valeur a ce temps (a 05 ans) de \$200000. Le nouvel ordinateur aura des coûts de maintenance et de fonctionnement de \$80000 par an.

Si l'actuel ordinateur est gardé, un autre petit ordinateur doit être acheté pour combler le déficit en production. Ce petit ordinateur coûtera \$300000 et aura une valeur de \$50000 dans 05 ans avec des coûts de maintenance et de fonctionnement de \$55000. En utilisant un MARR de 30%, choisissez la meilleur solution.

Exercice 7. une machine « X » a été utilisée pour 10 années et a actuellement une valeur (BV) de \$20000. Une décision doit être prise concernant le choix de l'alternatif la plus économique : Garder « X », remplacer « X » par « Y » ou bien remplacer « X » par « Z ».

- 1. Si la machine « X » continue à fonctionner, elle peut être utilisée pour 06 ans et puis sera abandonnée avec une valeur nulle. Les coûts annuels de maintenance et de fonctionnement seront de \$95000 par an.
- 2. Si la machine « X » est remplacée par la machine « Y », une valeur d'échange de \$25000 sera allouée à la machine « X ». La valeur de la machine « Y » est de \$120000. A la fin de la 6eme année la machine « Y » aura une valeur de \$30000. Les coûts de maintenance et de fonctionnement seront de \$80000 par an.

3. Si la machine « X » est remplacée par la machine « Z », pas de valeur d'échange est donnée à la machine « X ». La valeur de la machine « Z » est de \$150000. A la fin de la 6eme année, « Z » aura une valeur de \$50000. Les coûts de maintenance et de fonctionnement seront de \$60000.

En utilisant un MARR de 15%, quelle est la meilleure alternative que vous choisissez ?

Exercice 8. Une analyse de durée de vie économique a été faite sur un challenger et on a pu trouver son coût annuel uniforme équivalent (EUAC) celui montré ci-dessous. Un défenseur peut être vendu aujourd'hui pour \$15000, dans une année pour \$3000 et dans 02 ans pour \$1500. S'il est gardé, le défenseur aura des coûts de maintenance et de fonctionnement de \$7500 la prochaine année et \$9000 l'année d'après. Est-ce que faut remplacer le défenseur en se basant sur cette étude ? Le MARR est de 20%.

N (années)	EUAC
1	\$21760
2	21253
3	20833
4	19185
5	19684

Exercice 11. Une firme possède actuellement un engin qui a pour valeur \$80000. Les valeurs estimées des coûts de maintenance et de fonctionnement (M&F) et des valeurs de l'engin (MV) à la fin d'année pour les six années qui lui restent sont comme suit :

	Fin de l'année k					
	1	2	3	4	5	6
M&F coûts	\$20000	\$25000	\$38000	\$45000	\$47000	\$50000
MV	70000	60000	50000	40000	30000	20000

La firme a l'intention de remplacer l'ancien engin par un nouveau dont le prix est de \$220000 et ses valeurs estimées des coûts de maintenance et de fonctionnement ainsi que sa valeur à la fin d'année pour les six années qui viennent sont comme suit :

	Fin de l'année k					
	1	2	3	4	5	6
M&F coûts	\$10000	\$12000	\$16000	\$17000	\$20000	\$22000
MV	180000	150000	120000	100000	90000	85000

Si la valeur du MARR=0% est ce qu'il faut acheter le nouvel engin ? Si oui, quand ?

<u>Exercice 15.</u> Considérons un équipement qui coûtait initialement \$8000 et a les valeurs estimées des coûts de fonctionnement ainsi que sa valeur a la fin de chaque année comme suit :

Fin d'année	Coûts de	MV à la fin de
	fonctionnement	l'année
1	\$3000	\$4700
2	3000	3200
3	3500	2200
4	4000	1450
5	4500	950
6	5520	600
7	6250	300
8	7750	0

Si le taux d'intérêt est de 8% par an, déterminer le temps le plus économique pour remplacer l'équipement.

Responsable de la matière **Dr Abdellatif MEGNOUNIF**